Final Exam - Optimization B. Math II

07 January, 2022

- (i) Duration of the exam is 3 hours.
- (ii) The maximum number of points you can score in the exam is 100.
- (iii) You are not allowed to consult any notes or external sources for the exam.

Name: _

Roll Number: _

1. Let

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 2 & 1 & 0 \end{bmatrix}, \vec{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

- (a) (5 points) Compute the pseudoinverse of A.
- (b) (5 points) Find a vector $\vec{x} \in \mathbb{R}^3$ which minimizes $||A\vec{x} \vec{b}||_2$ (with justification).

Total for Question 1: 10

2. (10 points) Every matrix $A = (a_{ij})$ defines the following game. In each round, the row player selects one of the rows i = 1, 2, ..., m, and the column player selects one of the columns j = 1, 2, ..., n, the resulting payoff to the row player is a_{ij} ; that is to say, the column player gives the row player a_{ij} monetary units. (If a_{ij} is negative, then it is the row player who pays $|a_{ij}|$ to the column player.)

In the game with the payoff matrix:

$$\begin{bmatrix} 3 & 2 & 0 & -1 & 5 & -2 \\ -2 & -3 & 2 & 4 & 0 & 4 \\ 5 & -3 & 4 & 0 & 4 & 7 \\ 1 & 3 & 3 & 2 & -6 & 5 \end{bmatrix}$$

the row player's mixed strategy $\left[\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{4}\right]$ is optimal. Describe all the optimal strategies of the column player.

Total for Question 2: 10

3. Consider the linear program:

Maximize
$$10x_1 + 14x_2 + 20x_3$$

subject to

$$2x_1 + 3x_2 + 4x_3 \le 220$$

$$4x_1 + 2x_2 - x_3 \le 385$$

$$x_1 + 4x_3 \le 160$$

$$x_1, x_2, x_3 \ge 0.$$

- (a) (5 points) Write down the **dual** linear programming problem.
- (b) (10 points) Assuming $x_1 = 60, x_2 = 0, x_3 = 25$ is an optimal solution to the LP problem mentioned above, find an optimal solution to the dual problem (with justification).
- (c) (5 points) Show that $x_1 = 60, x_2 = 0, x_3 = 25$ is indeed an optimal solution to the LP problem mentioned above.

Total for Question 3: 20

4. The following tableaux corresponds to an *optimal basis* for a linear programming problem, where x_1, x_2, x_3 are the original primal variables, and s_1 and s_2 are the slack variables corresponding to the two constraints.

	x_1	x_2	x_3	s_1	s_2
$\frac{65}{2}$	0	2	0	3	2
$\frac{5}{2}$	0	$\frac{1}{4}$	1	$\frac{1}{2}$	0
$\frac{5}{2}$	1	$-\frac{1}{2}$	0	$-\frac{1}{6}$	$\frac{1}{3}$

- (a) (10 points) Deduce the original linear program with justification.
- (b) (4 points) Write the dual of the original program.
- (c) (6 points) Explain why the reduced costs of the slack variables in the tableau are equal to the negative of values of the dual optimal variables for the corresponding constraints.
- (d) (4 points) From the given tableax, determine B^{-1} , where B is the given optimal basis.

- (e) (6 points) Consider adding a new variable x_4 to the original problem with corresponding column $\begin{bmatrix} 1\\1 \end{bmatrix}$ in the constraint matrix, and (unknown) cost coefficient c_4 . Calculate the (expanded) tableau corresponding to B, the given basis, by calculating the entries for the new column corresponding to x_4 (the reduced cost in row zero must be expressed as a function of c_4 , the unknown cost coefficient).
- (f) (5 points) Determine for what values of c_4 the current basis B remains optimal.

```
Total for Question 4: 35
```

5. In a classification problem, the statistician is given a sample of correctly classified data:

$$\{(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n)\}.$$

For each data point $i, \vec{x}_i \in \mathbb{R}^n$ is the vector of features and $y_i \in \{\pm 1\}$ is the class of the data point. The goal of the statistician is to learn a *discriminant* function $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$\left\{ \begin{array}{ll} f(\vec{x}_i) > 0 & \text{if } y_i = +1 \\ f(\vec{x}_i) < 0 & \text{if } y_i = -1 \end{array} \right.$$

Such a function f can be used to classify new data in the following manner: Given a new feature vector $\vec{x} \in \mathbb{R}^n$, if $f(\vec{x})$ is positive, assign \vec{x} to class +1, and if $f(\vec{x})$ is negative, assign \vec{x} to class -1. Affine discriminant functions are said to be **support** vector machines.

- (a) (5 points) For a non-zero vector $\vec{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$, show that the distance between the two hyperplanes $\{\vec{x} \in \mathbb{R}^n : \langle \vec{a}, \vec{x} \rangle + b = -1\}$ and $\{\vec{x} \in \mathbb{R}^n : \langle \vec{a}, \vec{x} \rangle + b = 1\}$ is given by $\frac{2}{\|\vec{a}\|_2}$.
- (b) (10 points) We want to select a hyperplane which separate the data points "the most"; in other words, we want a non-zero vector $\vec{a} \in \mathbb{R}^n$ with maximum classification margin. We phrase this in terms of the following optimization problem:

$$\underset{\vec{a},b}{\text{minimize}} \ \langle \vec{a},\vec{a}\rangle = \|\vec{a}\|_2^2$$

subject to

$$\langle \vec{a}, \vec{x}_i \rangle + b \ge 1, i \in I \langle \vec{a}, \vec{x}_j \rangle + b \le -1, j \in J.$$

Compute the dual function $F(\vec{\lambda}, \vec{\mu})$ of the above optimization problem, and specify for what values of $(\vec{\lambda}, \vec{\mu})$, we have $F(\vec{\lambda}, \vec{\mu}) > -\infty$.

(c) (10 points) Show that the DUAL problem of the optimization problem in part (c) is equivalent to,

$$\underset{\vec{\lambda},\vec{\mu}}{\text{minimize}} \left\| \sum_{i \in I} \lambda_i \vec{x}_i - \sum_{j \in J} \mu_j \vec{x}_j \right\|_2$$

subject to

$$\sum_{i \in I} \lambda_i = \sum_{j \in J} \mu_j = 1, \vec{\lambda} \ge \vec{0}, \vec{\mu} \ge \vec{0}.$$

Total for Question 5: 25