Final Exam - Optimization B. Math II

07 January, 2022
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 .
(iii) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad

Roll Number: \qquad

1. Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 1 & 0
\end{array}\right], \vec{b}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

(a) (5 points) Compute the pseudoinverse of A.
(b) (5 points) Find a vector $\vec{x} \in \mathbb{R}^{3}$ which minimizes $\|A \vec{x}-\vec{b}\|_{2}$ (with justification).

Total for Question 1: 10
2. (10 points) Every matrix $A=\left(a_{i j}\right)$ defines the following game. In each round, the row player selects one of the rows $i=1,2, \ldots, m$, and the column player selects one of the columns $j=1,2, \ldots, n$, the resulting payoff to the row player is $a_{i j}$; that is to say, the column player gives the row player $a_{i j}$ monetary units. (If $a_{i j}$ is negative, then it is the row player who pays $\left|a_{i j}\right|$ to the column player.)

In the game with the payoff matrix:

$$
\left[\begin{array}{cccccc}
3 & 2 & 0 & -1 & 5 & -2 \\
-2 & -3 & 2 & 4 & 0 & 4 \\
5 & -3 & 4 & 0 & 4 & 7 \\
1 & 3 & 3 & 2 & -6 & 5
\end{array}\right]
$$

the row player's mixed strategy $\left[\frac{1}{2}, \frac{1}{4}, 0, \frac{1}{4}\right]$ is optimal. Describe all the optimal strategies of the column player.

Total for Question 2: 10
3. Consider the linear program:

Maximize $10 x_{1}+14 x_{2}+20 x_{3}$
subject to

$$
\begin{aligned}
2 x_{1}+3 x_{2}+4 x_{3} & \leq 220 \\
4 x_{1}+2 x_{2}-x_{3} & \leq 385 \\
x_{1}+4 x_{3} & \leq 160 \\
x_{1}, x_{2}, x_{3} & \geq 0 .
\end{aligned}
$$

(a) (5 points) Write down the dual linear programming problem.
(b) (10 points) Assuming $x_{1}=60, x_{2}=0, x_{3}=25$ is an optimal solution to the LP problem mentioned above, find an optimal solution to the dual problem (with justification).
(c) (5 points) Show that $x_{1}=60, x_{2}=0, x_{3}=25$ is indeed an optimal solution to the LP problem mentioned above.

Total for Question 3: 20
4. The following tableaux corresponds to an optimal basis for a linear programming problem, where x_{1}, x_{2}, x_{3} are the original primal variables, and s_{1} and s_{2} are the slack variables corresponding to the two constraints.

	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}
$\frac{65}{2}$	0	2	0	3	2
$\frac{5}{2}$	0	$\frac{1}{4}$	1	$\frac{1}{2}$	0
$\frac{5}{2}$	1	$-\frac{1}{2}$	0	$-\frac{1}{6}$	$\frac{1}{3}$

(a) (10 points) Deduce the original linear program with justification.
(b) (4 points) Write the dual of the original program.
(c) (6 points) Explain why the reduced costs of the slack variables in the tableau are equal to the negative of values of the dual optimal variables for the corresponding constraints.
(d) (4 points) From the given tableax, determine B^{-1}, where B is the given optimal basis.
(e) (6 points) Consider adding a new variable x_{4} to the original problem with corresponding column $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in the constraint matrix, and (unknown) cost coefficient c_{4}. Calculate the (expanded) tableau corresponding to B, the given basis, by calculating the entries for the new column corresponding to x_{4} (the reduced cost in row zero must be expressed as a function of c_{4}, the unknown cost coefficient).
(f) (5 points) Determine for what values of c_{4} the current basis B remains optimal.

Total for Question 4: 35
5. In a classification problem, the statistician is given a sample of correctly classified data:

$$
\left\{\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)\right\}
$$

For each data point $i, \vec{x}_{i} \in \mathbb{R}^{n}$ is the vector of features and $y_{i} \in\{ \pm 1\}$ is the class of the data point. The goal of the statistician is to learn a discriminant function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\begin{cases}f\left(\vec{x}_{i}\right)>0 & \text { if } y_{i}=+1 \\ f\left(\vec{x}_{i}\right)<0 & \text { if } y_{i}=-1\end{cases}
$$

Such a function f can be used to classify new data in the following manner: Given a new feature vector $\vec{x} \in \mathbb{R}^{n}$, if $f(\vec{x})$ is positive, assign \vec{x} to class +1 , and if $f(\vec{x})$ is negative, assign \vec{x} to class -1 . Affine discriminant functions are said to be support vector machines.
(a) (5 points) For a non-zero vector $\vec{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$, show that the distance between the two hyperplanes $\left\{\vec{x} \in \mathbb{R}^{n}:\langle\vec{a}, \vec{x}\rangle+b=-1\right\}$ and $\left\{\vec{x} \in \mathbb{R}^{n}:\langle\vec{a}, \vec{x}\rangle+b=1\right\}$ is given by $\frac{2}{\|\vec{a}\|_{2}}$.
(b) (10 points) We want to select a hyperplane which separate the data points "the most"; in other words, we want a non-zero vector $\vec{a} \in \mathbb{R}^{n}$ with maximum classification margin. We phrase this in terms of the following optimization problem:

$$
\underset{\vec{a}, b}{\operatorname{minimize}}\langle\vec{a}, \vec{a}\rangle=\|\vec{a}\|_{2}^{2}
$$

subject to

$$
\begin{gathered}
\left\langle\vec{a}, \vec{x}_{i}\right\rangle+b \geq 1, i \in I \\
\left\langle\vec{a}, \vec{x}_{j}\right\rangle+b \leq-1, j \in J .
\end{gathered}
$$

Compute the dual function $F(\vec{\lambda}, \vec{\mu})$ of the above optimization problem, and specify for what values of $(\vec{\lambda}, \vec{\mu})$, we have $F(\vec{\lambda}, \vec{\mu})>-\infty$.
(c) (10 points) Show that the DUAL problem of the optimization problem in part (c) is equivalent to,

$$
\underset{\vec{\lambda}, \vec{\mu}}{\operatorname{minimize}}\left\|\sum_{i \in I} \lambda_{i} \vec{x}_{i}-\sum_{j \in J} \mu_{j} \vec{x}_{j}\right\|_{2}
$$

subject to

$$
\sum_{i \in I} \lambda_{i}=\sum_{j \in J} \mu_{j}=1, \vec{\lambda} \geq \overrightarrow{0}, \vec{\mu} \geq \overrightarrow{0}
$$

Total for Question 5: 25

Page 4

